C++isfun-Part 13

at Turbine/Warner Bros.!

Syllabus

1) First program and introduction to data types and control structures with
applications for games learning how to use the programming environment Mar 25-27
2) Objects, encapsulation, abstract data types, data protection and scope April 1-3
3) Basic data structures and how to use them, opening files and performing
operations on files — April 8-10

4) Algorithms on data structures, algorithms for specific tasks, simple AI and planning
type algorithms, game Al algorithms April 15-17

Project 1 Due — April 17

5) More Al: search, heuristics, optimization, decision trees, supervised/unsupervised
learning — April 22-24

6) Game API and/or event-oriented programming, model view controller, map reduce
filter — April 29, May 1

7) Basic threads models and some simple databases SQLite May 6-8

8) Graphics programming, shaders, textures, 3D models and rotations May 13-15
Project 2 Due May 15

9) How to download an API and learn how to use functions in that API, Windows
Foundation Classes May 20-22

10) Designing and implementing a simple game in C++ May 27-29

11) Selected topics — Gesture recognition & depth controllers like the Microsoft
Kinect, Network Programming & TCP/IP, OSC June 3-5

12) Working on student projects - June 10-12

Final project presentations Project 3/Final Project Due June 12

Recall, Project 2 due next Wednesday

©

Today is LAB DAY, time to get familiar

with OpenGL and GLUT (because
PowerPoint is boring)

* Goals of LAB DAY:
— Get comfortable with 3D graphics
— Show off new GLUT/OpenGL/DirectX stuff
— Make pretty pictures
— Change lighting on pretty pictures
— Change viewport, etc. for pretty pictures
— Make 3D stuff on the computer
— Understand what’s happening with everything

* Installing FreeGLUT/GLUT on Visual Studio
2010:

http://visualambition.wordpress.com/
2010/08/12/glut-and-visual-studio-2010/

* |nstall directions for Xcode:
Step by Step: Xcode 4, OpenGL & GLUT in Lion
http://www.autofasurer.net/wp/?p=106

http://www.opengl.org/sdk/docs/books/SuperBible/

® DOCUMENTATION, SAMPLE CODE, LIBRARIES, AND TOOLS
FOR CREATING OPENGL-BASED APPLICATIONS

OpenGL Software Development Kit
penGL

SDK Home Documentation Libraries Tutorials Tools Forums

OpenGL SuperBible

Comprehensive Tutorial and Reference
BY RICHARD S. WRIGHT, NICHOLAS HAEMEL, GRAHAM SELLERS AND BENJAMIN LIPCHAK

OpenGL OpenGL
PEN OpenGL
UPERBIBLE SUPERBII

A%
Second Edition 3 x ’
LY)
& -
o -
\‘
4

Commprrdustsive Tt bel aml Referome

OpenGL

Third Edition

The fifth edition of OpenGL® SuperBible, the newest member of the Addison Wesley OpenGL Technical Library, is now available!

Sample Code From Fourth Edition

Complete source code for all platforms (182 MB): SB-AllSource.zip
Source with pre-built binaries (Windows, 120MB): SB-WinwBin.zip
Source with pre-built binaries (Mac OS X, 208MB): SB-MacwBin.zip

Source only, no binaries (Windows, 60MB): SB-WinSrc.zip
Source only, no binaries (Mac OS X, 71MB): SB-MacSrc.zip
Source only, no binaries (Linux, 48MB): SB-LinuxSrc.tar.bz2

http://www.sgi.com/products/software/opengl/examples/glut/examples/

fogtst.jpg Demonstration program exhibiting fog technigues. fogtst.c
fontdemo.jpg | Bitmap and stroke fonts demonstration program. fontdemo.c
glpuzzle.jpg 3D puzzle that can solve itself automatically. glpuzzle.c
glutplane.jpg OpenGL planes a plenty - add and subtract them. glutplane.c
halomagic.jpg | Neat haloing effect using the stencil buffer. halomagic.c
halomagicl.jpg

(dinosaur)

highlight.jpg This program demonstrates the use of the GL lighting model. Objects are drawn using a grey material characteristic. A | highlight.c
single light source illuminates the objects.

lightlab.jpg Lighting laboratory to experiment with different material properties and lights. lightlab.c
mjkwarp.jpg Texture warping example to show many texturing options of OpenGL. mjkwarp.c
molehill.jpg Really, really shiny nurbs/evaluators example. molehill.c

movelight.jpg | This program demonstrates when to issue lighting and transformation commands to render a model with a light which | movelight.c
iIs moved by a modeling transformation (rotate or translate). The light position is reset after the modeling
transformation is called. The eye position does not change.

A sphere Is drawn using a grey material characteristic. A single light source illuminates the object.

Interaction: pressing the left or middle mouse button alters the modeling transformation (x rotation) by 30 degrees.
The scene is then redrawn with the light in a new position.

Figure 1-1 : White Rectangle on a Black Background

Example 1-1 : Chunk of OpenGL Code

#include <whateverYouNeed.h>
main() {
InitializeAWindowPlease();

glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);

glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
glBegin(GL_POLYGON) ;

glvertex3f (0.25, 0.25, 0.0);
glvertex3f (0.75, 0.25, 0.0);
glvertex3f (0.75, 0.75, 0.0);
glvertex3f (0.25, 0.75, 0.0);
glEnd();
glFlush();

UpdateTheWindowAndCheckForEvents () ;
}

The first line of the main() routine initializes a window on the screen: The InitializeA WindowPlease()
routine is meant as a placeholder for window system-specific routines, which are generally not OpenGL
calls. The next two lines are OpenGL commands that clear the window to black: glClearColor()
establishes what color the window will be cleared to, and glClear() actually clears the window. Once the
clearing color is set, the window is cleared to that color whenever glClear() is called. This clearing color
can be changed with another call to glClearColor(). Similarly, the glColor3f() command establishes
what color to use for drawing objects - in this case, the color is white. All objects drawn after this point
use this color, until it’s changed with another call to set the color.

The next OpenGL command used in the program, glOrtho(), specifies the coordinate system OpenGL
assumes as it draws the final image and how the image gets mapped to the screen. The next calls, which
are bracketed by glBegin() and glEnd(), define the object to be drawn - in this example, a polygon with
four vertices. The polygon’s "corners" are defined by the glVertex3f() commands. As you might be able
to guess from the arguments, which are (x, y, z) coordinates, the polygon is a rectangle on the z=0 plane.

whiterect

halomagic

harmonograph

movelight

Welcome 1o

FI:] }"'ﬁ[FoLse t:-l._,lJ[_JE_-:IZI:~I“'|‘ T'_Ei:lr' FIISrLL,

Hold down the left mouse button
and move the mouse horizontally

to the light position.

http://www.spacesimulator.net/wiki/index.php?title=3d_Engine_Programming_Tutorials

Texture Mapping

How to load an image and

use it to cover an object.

This technique is called OpenGL 3.3 Porting
texture mapping and is the English

most responsible for the

realism of the scene.

English | Itallan

Linux
MacOs
MacOSX(Cocoa)
Windows(VC6)
Windows(VC.NET)(OpenGL3.3)

3ds Loader

The data structure for a

complex object can't be
= written by hand. There are
a lot of programs that help
to create 3d meshes in a
very quick way. In this
lesson we study how to
load a 3ds file, a format
that is really famous on the
net.
English | German |
Italian

Linux
MacOs
OpenGL 3.3 Porting MacOSX(Cocoa)
English SDL
Windows(VC6)
Windows(VC.NET)(OpenGL3.3)

Vectors, Normals and
OpenGL Lighting
Lighting is the other

_important thing, after
texture mapping, that adds
to the scene further Linux
realism. Without lights all OpenGL 3.3 Porting MacOSX(Cocoa)
the objects seems flat. We English Windows(VC6)
will study also Vectors and Windows(VC.NET)(OpenGL3.3)
normals because they are
indispensable to make
lighting calculations.
English | German |
Italian

Example 1-2 : Simple OpenGL Program Using GLUT: hello.c

#include <GL/gl.h>
#include <GL/glut.h>

void display(void)

{
/* clear all pixels */
glClear (GL_COLOR_BUFFER_BIT);
/* draw white polygon (rectangle) with corners at
* (0.25, 0.25, 0.0) and (0.75, 0.75, 0.0)
*/
glColor3f (1.0, 1.0, 1.0);
glBegin(GL_POLYGON) ;
glvertex3f (0.25, 0.25, 0.0);
glvertex3f (0.75, 0.25, 0.0);
glvertex3f (0.75, 0.75, 0.0);
glvertex3f (0.25, 0.75, 0.0);
glEnd();
/* don’t wait!
* start processing buffered OpenGL routines
*/
glFlush ();
}
void init (void)
{
/* select clearing (background) color */
glClearColor (0.0, 0.0, 0.0, 0.0);
/* initialize viewing values */
glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();
glOortho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
}
/*
* Declare initial window size, position, and display mode
* (single buffer and RGBA). Open window with "hello"
* in its title bar. Call initialization routines.
* Register callback function to display graphics.
* Enter main loop and process events.
*/

int main(int argc, char** argv)

{

glutInit(&argc, argv);

glutInitDisplayMode (GLUT SINGLE | GLUT_RGB);
glutInitWindowSize (250, 250);
glutInitWindowPosition (100, 100);
glutCreateWindow ("hello");

init ();

glutDisplayFunc(display);

glutMainLoop();
return 0; /* ISO C requires main to return

int.

*/

Double Buffering

Most OpenGL implementations provide double-buffering - hardware or software that supplies two
complete color buffers. One is displayed while the other is being drawn. When the drawing of a frame is
complete, the two buffers are swapped, so the one that was being viewed is now used for drawing, and
vice versa. This is like a movie projector with only two frames in a loop; while one is being projected on
the screen, an artist is desperately erasing and redrawing the frame that’s not visible. As long as the artist
is quick enough, the viewer notices no difference between this setup and one where all the frames are
already drawn and the projector is simply displaying them one after the other. With double-buffering,
every frame is shown only when the drawing is complete; the viewer never sees a partially drawn frame.

If you are using the GLUT library, you’ll want to call this routine:

void glutSwapBuffers(void);

Example 1-3 illustrates the use of glutSwapBuffers() in an example that draws a spinning square as
shown in Figure 1-3. The following example also shows how to use GLUT to control an input device
and turn on and off an idle function. In this example, the mouse buttons toggle the spinning on and off.

(3558

Frame O Frame 10 Frame 20 Frame 30 Frame 40

Figure 1-3 : Double-Buffered Rotating Square

Example 1-3 : Double-Buffered Program: double.c

#include <GL/gl.h>

#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

static GLfloat spin = 0.0;

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);

}

void display(void)

{
glClear(GL_COLOR_BUFFER BIT);
glPushMatrix();
glRotatef (spin, 0.0, 0.0, 1.0);
glColor3f(1.0, 1.0, 1.0);

glRectf(-25.0, -25.0, 25.0, 25.0);
glPopMatrix();

glutSwapBuffers();
}
void spinDisplay(void)
{
spin = spin + 2.0;
if (spin > 360.0)
spin = spin - 360.0;
glutPostRedisplay();
}
void reshape(int w, int h)
{
glviewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL,_PROJECTION);
glLoadIdentity();
glortho(-50.0, 50.0, -50.0, 50.0, -1.0, 1.0);
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();
}

void mouse(int button, int state, int x, int y)
{
switch (button) {
case GLUT_LEFT_ BUTTON:

if (state == GLUT_DOWN)
glutIdleFunc(spinDisplay);
break;
case GLUT_ MIDDLE_BUTTON:
if (state == GLUT_DOWN)
glutIdleFunc(NULL);
break;
default:
break;
}
}
/*

* Request double buffer display mode.
* Register mouse input callback functions
*/
int main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode (GLUT DOUBLE | GLUT RGB);
glutInitWindowSize (250, 250);
glutInitWindowPosition (100, 100);
glutCreateWindow (argv([0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc (reshape);
glutMouseFunc (mouse) ;
glutMainLoop();
return 0;

doublebuffer spinning rectangle

sphereworld

fragmentshaders.cpp

shadowmap

