
	

C++ is Fun – Part 13	

at	
 Turbine/Warner	
 Bros.!	

Russell	
 Hanson	

Syllabus	

1) First program and introduction to data types and control structures with
applications for games learning how to use the programming environment Mar 25-27
2) Objects, encapsulation, abstract data types, data protection and scope April 1-3
3) Basic data structures and how to use them, opening files and performing
operations on files – April 8-10
4) Algorithms on data structures, algorithms for specific tasks, simple AI and planning
type algorithms, game AI algorithms April 15-17
Project 1 Due – April 17
5) More AI: search, heuristics, optimization, decision trees, supervised/unsupervised
learning – April 22-24
6) Game API and/or event-oriented programming, model view controller, map reduce
filter – April 29, May 1
7) Basic threads models and some simple databases SQLite May 6-8
8) Graphics programming, shaders, textures, 3D models and rotations May 13-15
Project 2 Due May 15
9) How to download an API and learn how to use functions in that API, Windows
Foundation Classes May 20-22
10) Designing and implementing a simple game in C++ May 27-29
11) Selected topics – Gesture recognition & depth controllers like the Microsoft
Kinect, Network Programming & TCP/IP, OSC June 3-5
12) Working on student projects - June 10-12
Final project presentations Project 3/Final Project Due June 12

Recall,	
 Project	
 2	
 due	
 next	
 Wednesday	

J	

Today	
 is	
 LAB	
 DAY,	
 Bme	
 to	
 get	
 familiar	

with	
 OpenGL	
 and	
 GLUT	
 (because	

PowerPoint	
 is	
 boring)	

•  Goals	
 of	
 LAB	
 DAY:	

– Get	
 comfortable	
 with	
 3D	
 graphics	

– Show	
 off	
 new	
 GLUT/OpenGL/DirectX	
 stuff	
 	

– Make	
 preTy	
 pictures	

– Change	
 lighBng	
 on	
 preTy	
 pictures	

– Change	
 viewport,	
 etc.	
 for	
 preTy	
 pictures	

– Make	
 3D	
 stuff	
 on	
 the	
 computer	

– Understand	
 what’s	
 happening	
 with	
 everything	

•  Installing	
 FreeGLUT/GLUT	
 on	
 Visual	
 Studio	

2010:	

hTp://visualambiBon.wordpress.com/
2010/08/12/glut-­‐and-­‐visual-­‐studio-­‐2010/	
 	

•  Install	
 direcBons	
 for	
 Xcode:	

Step	
 by	
 Step:	
 Xcode	
 4,	
 OpenGL	
 &	
 GLUT	
 in	
 Lion	

hTp://www.autofasurer.net/wp/?p=106	

	

hTp://www.opengl.org/sdk/docs/books/SuperBible/	

Sample	
 Code	
 From	
 Fourth	
 EdiBon	

Complete	
 source	
 code	
 for	
 all	
 plaeorms	
 (182	
 MB): 	
 SB-­‐AllSource.zip	

Source	
 with	
 pre-­‐built	
 binaries	
 (Windows,	
 120MB): 	
 SB-­‐WinwBin.zip	

Source	
 with	
 pre-­‐built	
 binaries	
 (Mac	
 OS	
 X,	
 208MB): 	
 SB-­‐MacwBin.zip	

Source	
 only,	
 no	
 binaries	
 (Windows,	
 60MB): 	
 SB-­‐WinSrc.zip	

Source	
 only,	
 no	
 binaries	
 (Mac	
 OS	
 X,	
 71MB): 	
 SB-­‐MacSrc.zip	

Source	
 only,	
 no	
 binaries	
 (Linux,	
 48MB): 	
 SB-­‐LinuxSrc.tar.bz2	

hTp://www.sgi.com/products/sohware/opengl/examples/glut/examples/	

Figure 1-1 : White Rectangle on a Black Background

Example 1-1 : Chunk of OpenGL Code

#include <whateverYouNeed.h>

main() {

 InitializeAWindowPlease();

 glClearColor (0.0, 0.0, 0.0, 0.0);
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0);
 glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
 glBegin(GL_POLYGON);
 glVertex3f (0.25, 0.25, 0.0);
 glVertex3f (0.75, 0.25, 0.0);
 glVertex3f (0.75, 0.75, 0.0);
 glVertex3f (0.25, 0.75, 0.0);
 glEnd();
 glFlush();

 UpdateTheWindowAndCheckForEvents();
}

The first line of the main() routine initializes a window on the screen: The InitializeAWindowPlease()
routine is meant as a placeholder for window system-specific routines, which are generally not OpenGL
calls. The next two lines are OpenGL commands that clear the window to black: glClearColor()
establishes what color the window will be cleared to, and glClear() actually clears the window. Once the
clearing color is set, the window is cleared to that color whenever glClear() is called. This clearing color
can be changed with another call to glClearColor(). Similarly, the glColor3f() command establishes
what color to use for drawing objects - in this case, the color is white. All objects drawn after this point
use this color, until it’s changed with another call to set the color.

The next OpenGL command used in the program, glOrtho(), specifies the coordinate system OpenGL
assumes as it draws the final image and how the image gets mapped to the screen. The next calls, which
are bracketed by glBegin() and glEnd(), define the object to be drawn - in this example, a polygon with
four vertices. The polygon’s "corners" are defined by the glVertex3f() commands. As you might be able
to guess from the arguments, which are (x, y, z) coordinates, the polygon is a rectangle on the z=0 plane.

whiterect	

halomagic	

harmonograph	

movelight	

hTp://www.spacesimulator.net/wiki/index.php?Btle=3d_Engine_Programming_Tutorials	

Note the restructuring of the code. To maximize efficiency, operations that need only be called once
(setting the background color and coordinate system) are now in a procedure called init(). Operations to
render (and possibly re-render) the scene are in the display() procedure, which is the registered GLUT
display callback.

Example 1-2 : Simple OpenGL Program Using GLUT: hello.c

#include <GL/gl.h>
#include <GL/glut.h>

void display(void)
{
/* clear all pixels */
 glClear (GL_COLOR_BUFFER_BIT);

/* draw white polygon (rectangle) with corners at
 * (0.25, 0.25, 0.0) and (0.75, 0.75, 0.0)
 */
 glColor3f (1.0, 1.0, 1.0);
 glBegin(GL_POLYGON);
 glVertex3f (0.25, 0.25, 0.0);
 glVertex3f (0.75, 0.25, 0.0);
 glVertex3f (0.75, 0.75, 0.0);
 glVertex3f (0.25, 0.75, 0.0);
 glEnd();

/* don’t wait!
 * start processing buffered OpenGL routines
 */
 glFlush ();
}

void init (void)
{
/* select clearing (background) color */
 glClearColor (0.0, 0.0, 0.0, 0.0);

/* initialize viewing values */
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
}

/*
 * Declare initial window size, position, and display mode
 * (single buffer and RGBA). Open window with "hello"
 * in its title bar. Call initialization routines.
 * Register callback function to display graphics.
 * Enter main loop and process events.
 */
int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (250, 250);
 glutInitWindowPosition (100, 100);
 glutCreateWindow ("hello");
 init ();
 glutDisplayFunc(display);

 glutMainLoop();
 return 0; /* ISO C requires main to return int. */
}

Handling Input Events

You can use these routines to register callback commands that are invoked when specified events occur.

glutReshapeFunc(void (* func)(int w, int h)) indicates what action should be taken when the
window is resized.

glutKeyboardFunc(void (* func)(unsigned char key, int x, int y)) and glutMouseFunc(void
(* func)(int button, int state, int x, int y)) allow you to link a keyboard key or a mouse button with a
routine that’s invoked when the key or mouse button is pressed or released.

glutMotionFunc(void (* func)(int x, int y)) registers a routine to call back when the mouse is
moved while a mouse button is also pressed.

Managing a Background Process

You can specify a function that’s to be executed if no other events are pending - for example, when the
event loop would otherwise be idle - with glutIdleFunc(void (* func)(void)). This routine takes a pointer
to the function as its only argument. Pass in NULL (zero) to disable the execution of the function.

Drawing Three-Dimensional Objects

GLUT includes several routines for drawing these three-dimensional objects:

cone icosahedron teapot

cube octahedron tetrahedron

dodecahedron sphere torus

You can draw these objects as wireframes or as solid shaded objects with surface normals defined. For
example, the routines for a cube and a sphere are as follows:

void glutWireCube(GLdouble size);

void glutSolidCube(GLdouble size);

void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);

void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);

All these models are drawn centered at the origin of the world coordinate system. (See for information
on the prototypes of all these drawing routines.)

Double	
 Buffering	

Animation
One of the most exciting things you can do on a graphics computer is draw pictures that move. Whether
you’re an engineer trying to see all sides of a mechanical part you’re designing, a pilot learning to fly an
airplane using a simulation, or merely a computer-game aficionado, it’s clear that animation is an
important part of computer graphics.

In a movie theater, motion is achieved by taking a sequence of pictures and projecting them at 24 per
second on the screen. Each frame is moved into position behind the lens, the shutter is opened, and the
frame is displayed. The shutter is momentarily closed while the film is advanced to the next frame, then
that frame is displayed, and so on. Although you’re watching 24 different frames each second, your
brain blends them all into a smooth animation. (The old Charlie Chaplin movies were shot at 16 frames
per second and are noticeably jerky.) In fact, most modern projectors display each picture twice at a rate
of 48 per second to reduce flickering. Computer-graphics screens typically refresh (redraw the picture)
approximately 60 to 76 times per second, and some even run at about 120 refreshes per second. Clearly,
60 per second is smoother than 30, and 120 is marginally better than 60. Refresh rates faster than 120,
however, are beyond the point of diminishing returns, since the human eye is only so good.

The key reason that motion picture projection works is that each frame is complete when it is displayed.
Suppose you try to do computer animation of your million-frame movie with a program like this:

open_window();
for (i = 0; i < 1000000; i++) {
 clear_the_window();
 draw_frame(i);
 wait_until_a_24th_of_a_second_is_over();
}

If you add the time it takes for your system to clear the screen and to draw a typical frame, this program
gives more and more disturbing results depending on how close to 1/24 second it takes to clear and
draw. Suppose the drawing takes nearly a full 1/24 second. Items drawn first are visible for the full 1/24
second and present a solid image on the screen; items drawn toward the end are instantly cleared as the
program starts on the next frame. They present at best a ghostlike image, since for most of the 1/24
second your eye is viewing the cleared background instead of the items that were unlucky enough to be
drawn last. The problem is that this program doesn’t display completely drawn frames; instead, you
watch the drawing as it happens.

Most OpenGL implementations provide double-buffering - hardware or software that supplies two
complete color buffers. One is displayed while the other is being drawn. When the drawing of a frame is
complete, the two buffers are swapped, so the one that was being viewed is now used for drawing, and
vice versa. This is like a movie projector with only two frames in a loop; while one is being projected on
the screen, an artist is desperately erasing and redrawing the frame that’s not visible. As long as the artist
is quick enough, the viewer notices no difference between this setup and one where all the frames are
already drawn and the projector is simply displaying them one after the other. With double-buffering,
every frame is shown only when the drawing is complete; the viewer never sees a partially drawn frame.

A modified version of the preceding program that does display smoothly animated graphics might look
like this:

OpenGL doesn’t have a swap_the_buffers() command because the feature might not be available on all
hardware and, in any case, it’s highly dependent on the window system. For example, if you are using
the X Window System and accessing it directly, you might use the following GLX routine:

void glXSwapBuffers(Display *dpy, Window window);

(See Appendix C for equivalent routines for other window systems.)

If you are using the GLUT library, you’ll want to call this routine:

void glutSwapBuffers(void);

Example 1-3 illustrates the use of glutSwapBuffers() in an example that draws a spinning square as
shown in Figure 1-3. The following example also shows how to use GLUT to control an input device
and turn on and off an idle function. In this example, the mouse buttons toggle the spinning on and off.

Figure 1-3 : Double-Buffered Rotating Square

Example 1-3 : Double-Buffered Program: double.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

static GLfloat spin = 0.0;

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 glPushMatrix();
 glRotatef(spin, 0.0, 0.0, 1.0);
 glColor3f(1.0, 1.0, 1.0);

 glRectf(-25.0, -25.0, 25.0, 25.0);
 glPopMatrix();
 glutSwapBuffers();
}

void spinDisplay(void)
{
 spin = spin + 2.0;
 if (spin > 360.0)
 spin = spin - 360.0;
 glutPostRedisplay();
}

void reshape(int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(-50.0, 50.0, -50.0, 50.0, -1.0, 1.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

void mouse(int button, int state, int x, int y)
{
 switch (button) {
 case GLUT_LEFT_BUTTON:
 if (state == GLUT_DOWN)
 glutIdleFunc(spinDisplay);
 break;
 case GLUT_MIDDLE_BUTTON:
 if (state == GLUT_DOWN)
 glutIdleFunc(NULL);
 break;
 default:
 break;
 }
}

/*
 * Request double buffer display mode.
 * Register mouse input callback functions
 */
int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize (250, 250);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMouseFunc(mouse);
 glutMainLoop();
 return 0;
}

 OpenGL Programming Guide (Addison-Wesley

doublebuffer	
 spinning	
 rectangle	

sphereworld	

fragmentshaders.cpp	

shadowmap	

